

The 6th Low Emission Advanced Power (LEAP) Workshop U.S. Department of Energy National Energy Technology Laboratory

Storage in Heat Pump and Heat Management Systems

Dr. Tianhao Xu, Ass. Prof. Dr. Justin NingWei Chiu

Justin.chiu@energy.kth.se

KTH Royal Institute of Technology, Sweden

Table of Content

- 2. Latent Heat Thermal Energy Storage integrated Heat Pump Systems
- 3. System Design with Latent Heat Storage
- 4. Conclusion

5. Future Outlook

1. Motivation

Demand-Side Load Shifting Needs **Energy Storage**

1. Motivation

Active Latent Heat Thermal Energy Storage (**LHTES**) + Heat Pump (**HP**) for space heating and domestic hot water supply

Compact storage component with Phase Change Material (PCM)

2. Latent Heat Thermal Energy Storage integrated Heat Pump Systems

Demonstrate a technical and economic feasibility evaluation

2. Latent Heat Thermal Energy Storage integrated Heat Pump Systems

2. Latent Heat Thermal Energy Storage integrated Heat Pump Systems

Horizon 2020 Programme Component 1+2: cylindrical encapsulation of C48/C58

Component 3: ellipsoidal encapsulation of ATP60

3. System Design with Latent Heat

Storage Discharge Heat Pump HP forward TES **TES** Horizon 2020 Heat distribution **Programme** system: radiators | Radiator return (a) (b)

'The most direct application of PCMs for space heating is their implementation in a tank heated by the heat pump condenser.'

---- Pardinas et al. State-of-the-art for the use of phasechange materials in tanks coupled with heat pumps

However, increase in condensation temperature → COP decreases

We propose here:

- •new LHTES+HP layouts without sacrificing COP
- •technical, economic, and environmental analyses

3. System Design with Latent Heat Storage

Conclusion

- Weekly Analysis: Week 1 2019
 - Fixed-time charge-discharge strategy:
- A three-story multi-family building in Stockholm with an R290 heat pump
- Performance indicators

- Technical:
$$WPF = \frac{\sum_{t=1}^{n} \dot{Q}_b(t)}{\sum_{t=1}^{n} P_{tot}(t)}$$

- Economic:
$$OPEX_{el} = \sum_{t=1}^{n} P_{tot}(t) \cdot Pri_{el}(t)$$

$$CAPEX_j < n \cdot Sav_w \cdot a$$

- Environmental:
$$E_{CO_{2,tot}} = \sum_{t=1}^{n} P_{tot}(t) \cdot CO_{2 \text{ eq}}(t)$$

• Discussion:

- new integrating layouts:
 - > 22%-26% higher WPF
 - > 34%-38% reduced CO₂ emission
 - > 2%-5% saving in OPEX vs. without storage
- Justifiable CAPEX

• Opportunities:

 Potential in future electricity pricing scenarios.

5. Future Outlook

Latent heat thermal energy storage

- High storage density
- Small temperature swing
- Suitable temperature range

But

- Low thermal conductivity
- Phase separation
- Non-steady thermal power
- Economic feasibility
- Environmental impact
- Too few experimental validations

Possible Solutions

Impregnation

Thank You for Your Attention

Justin.chiu@energy.kth.se

